Cell Production System Design: A Literature Review

Authors

  • Javid Ghahremani Nahr * Faculty member of Academic Center for Education, Culture and Research (ACECR)
  • Mehrnaz Bathaee Researcher of Department of Industrial Engineering, Karaj Branch, University of Karaj, Karaj, Iran
  • Ali Mazloumzadeh Department of Industrial Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
  • Hamed Nozari Department of Industrial Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran

DOI:

https://doi.org/10.52547/ijimes.1.1.16

DOR:

https://dorl.net/dor/20.1001.1.27832678.2021.1.1.2.2

Keywords:

Cell Production System, Cell Production System Design, Meta-heuristic Algorithms

Abstract

Purpose In a cell production system, a number of machines that differ in function are housed in the same cell. The task of these cells is to complete operations on similar parts that are in the same group. Determining the family of machine parts and cells is one of the major design problems of production cells. Cell production system design methods include clustering, graph theory, artificial intelligence, meta-heuristic, simulation, mathematical programming. This article discusses the operation of methods and research in the field of cell production system design.

Methodology: To examine these methods, from 187 articles published in this field by authoritative scientific sources, based on the year of publication and the number of restrictions considered and close to reality, which are searched using the keywords of these restrictions and among them articles Various aspects of production and design problems, such as considering machine costs and cell size and process routing, have been selected simultaneously.

Findings: Finally, the distribution diagram of the use of these methods and the limitations considered by their researchers, shows the use and efficiency of each of these methods. By examining them, more efficient and efficient design fields of this type of production system can be identified.

Originality/Value: In this article, the literature on cell production system from 1972 to 2021 has been reviewed.

Downloads

Download data is not yet available.

References

Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241-261. Doi: https://doi.org/10.1016/j.jmsy.2013.12.007

Askin, R. G. (2013). Contributions to the design and analysis of cellular manufacturing systems. International Journal of Production Research, 51(23-24), 6778-6787. Doi: https://doi.org/10.1080/00207543.2013.825745

Nouri, H. A., Leman, Z., Moghadam, H. P., & Sulaiman, R. (2014). Literature review on machine reliability in cellular manufacturing system. Am J Appl Sci, 11(12), 1964-1968.

Wu, L., Zhao, Y., Feng, Y., Niu, B., & Xu, X. (2021). Minimizing makespan of stochastic customer orders in cellular manufacturing systems with parallel machines. Computers & Operations Research, 125, 105101. Doi: https://doi.org/10.1016/j.cor.2020.105101

Zhao, Y., Xu, X., & Li, H. (2018). Minimizing expected cycle time of stochastic customer orders through bounded multi-fidelity simulations. IEEE Transactions on Automation Science and Engineering, 15(4), 1797-1809. doi: 10.1109/TASE.2018.2796090

Nasiri, M. M., & Naseri, F. (2019). Metaheuristic algorithms for the generalised cell formation problem considering machine reliability. International Journal of Process Management and Benchmarking, 9(4), 469-484. Doi: https://doi.org/10.1504/IJPMB.2019.103426

Zhao, Y., Xu, X., Li, H., & Liu, Y. (2018). Stochastic customer order scheduling with setup times to minimize expected cycle time. International Journal of Production Research, 56(7), 2684-2706. Doi: https://doi.org/10.1080/00207543.2017.1381348

Chen, J., Wang, M., Kong, X. T., Huang, G. Q., Dai, Q., & Shi, G. (2019). Manufacturing synchronization in a hybrid flowshop with dynamic order arrivals. Journal of Intelligent Manufacturing, 30(7), 2659-2668. Doi: https://doi.org/10.1007/s10845-017-1295-5

Aalaei, A., Kayvanfar, V., & Davoudpour, H. (2019). Integrating multi-dynamic virtual cellular manufacturing systems into multi-market allocation and production planning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(2), 643-664. Doi: https://doi.org/10.1177/0954405417731465

Xue, G., & Offodile, O. F. (2020). Integrated optimization of dynamic cell formation and hierarchical production planning problems. Computers & Industrial Engineering, 139, 106155. Doi: https://doi.org/10.1016/j.cie.2019.106155

Dehnavi-Arani, S., Sadegheih, A., Mehrjerdi, Y. Z., & Honarvar, M. (2020). A new bi-objective integrated dynamic cell formation and AGVs’ dwell point location problem on the inter-cell unidirectional single loop. Soft Computing, 24(21), 16021-16042. Doi: https://doi.org/10.1007/s00500-020-04921-9

Nouri, F., Samadzad, S., & Nahr, J. (2019). Meta-heuristics algorithm for two-machine no-wait flow-shop scheduling problem with the effects of learning. Uncertain Supply Chain Management, 7(4), 599-618. Doi: 10.5267/j.uscm.2019.5.002

Yan, P., Liu, S. Q., Sun, T., & Ma, K. (2018). A dynamic scheduling approach for optimizing the material handling operations in a robotic cell. Computers & Operations Research, 99, 166-177. Doi: https://doi.org/10.1016/j.cor.2018.05.009

Rostami, A., Paydar, M. M., & Asadi-Gangraj, E. (2020). A hybrid genetic algorithm for integrating virtual cellular manufacturing with supply chain management considering new product development. Computers & Industrial Engineering, 145, 106565. Doi: https://doi.org/10.1016/j.cie.2020.106565

Alimian, M., Ghezavati, V., & Tavakkoli-Moghaddam, R. (2020). New integration of preventive maintenance and production planning with cell formation and group scheduling for dynamic cellular manufacturing systems. Journal of Manufacturing Systems, 56, 341-358. Doi: https://doi.org/10.1016/j.jmsy.2020.06.011

Raoofpanah, H., Ghezavati, V., & Tavakkoli-Moghaddam, R. (2019). Solving a new robust green cellular manufacturing problem with environmental issues under uncertainty using Benders decomposition. Engineering Optimization, 51(7), 1229-1250. Doi: https://doi.org/10.1080/0305215X.2018.1517258

Ghahremani-Nahr, J., Nozari, H., & Najafi, S. E. (2020). Design a green closed loop supply chain network by considering discount under uncertainty. Journal of Applied Research on Industrial Engineering, 7(3), 238-266. Doi: 10.22105/jarie.2020.251240.1198

Ghahremani Nahr, J., Ghodratnama, A., IzadBakhah, H. R., & Tavakkoli Moghaddam, R. (2019). Design of multi-objective multi-product multi period green supply chain network with considering discount under uncertainty. Journal of Industrial Engineering Research in Production Systems, 6(13), 119-137. Doi: 10.22084/ier.2017.8877.1421

Kia, R. (2020). A genetic algorithm to integrate a comprehensive dynamic cellular manufacturing system with aggregate planning decisions. International Journal of Management Science and Engineering Management, 15(2), 138-154. Doi: https://doi.org/10.1080/17509653.2019.1655674

Feng, H., Xia, T., Da, W., Xi, L., & Pan, E. (2019). Concurrent design of cell formation and scheduling with consideration of duplicate machines and alternative process routings. Journal of Intelligent Manufacturing, 30(1), 275-289. Doi: https://doi.org/10.1007/s10845-016-1245-7

Chen, X., An, Y., Zhang, Z., & Li, Y. (2020). An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals. Journal of Manufacturing Systems, 54, 227-241. Doi: https://doi.org/10.1016/j.jmsy.2019.12.004

Kataoka, T. (2020). A multi-period mixed integer programming model on reconfigurable manufacturing cells. Procedia Manufacturing, 43, 231-238. Doi: https://doi.org/10.1016/j.promfg.2020.02.147

Sadeghi, A., Suer, G., Sinaki, R. Y., & Wilson, D. (2020). Cellular manufacturing design and replenishment strategy in a capacitated supply chain system: A simulation-based analysis. Computers & Industrial Engineering, 141, 106282. Doi: https://doi.org/10.1016/j.cie.2020.106282

Hong, Z., Zeng, Z., & Gao, L. (2021). Energy-efficiency scheduling of multi-cell manufacturing system considering total handling distance and eligibility constraints. Computers & Industrial Engineering, 151, 106998. Doi: https://doi.org/10.1016/j.cie.2020.106998

Tayal, A., Solanki, A., & Singh, S. P. (2020). Integrated frame work for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic and data envelopment analysis. Sustainable Cities and Society, 62, 102383. Doi: https://doi.org/10.1016/j.scs.2020.102383

Mourtzis, D., Siatras, V., Synodinos, G., Angelopoulos, J., & Panopoulos, N. (2020). A framework for adaptive scheduling in cellular manufacturing systems. Procedia CIRP, 93, 989-994. Doi: https://doi.org/10.1016/j.procir.2020.04.040

Duffner, F., Mauler, L., Wentker, M., Leker, J., & Winter, M. (2021). Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. International Journal of Production Economics, 232, 107982. Doi: https://doi.org/10.1016/j.ijpe.2020.107982

Salimpour, S., Pourvaziri, H., & Azab, A. (2021). Semi-robust layout design for cellular manufacturing in a dynamic environment. Computers & Operations Research, 133, 105367. Doi: https://doi.org/10.1016/j.cor.2021.105367

Ebrahimi, H., Kianfar, K., & Bijari, M. (2021). Scheduling a cellular manufacturing system based on price elasticity of demand and time-dependent energy prices. Computers & Industrial Engineering, 159, 107460. Doi: https://doi.org/10.1016/j.cie.2021.107460

Ghahremani-Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert systems with applications, 116, 454-471. Doi: https://doi.org/10.1016/j.eswa.2018.09.027

Adinarayanan, A., Dinesh, S., Balaji, D. S., & Umanath, K. (2021). Design of machine cell in cellular manufacturing systems using PSO approach. Materials Today: Proceedings. Doi: https://doi.org/10.1016/j.matpr.2021.02.472

Saraçoğlu, İ., Süer, G. A., & Gannon, P. (2021). Minimizing makespan and flowtime in a parallel multi-stage cellular manufacturing company. Robotics and Computer-Integrated Manufacturing, 72, 102182. Doi: https://doi.org/10.1016/j.rcim.2021.102182

Weeber, M., Wanner, J., Schlegel, P., Birke, K. P., & Sauer, A. (2020). Methodology for the simulation based energy efficiency assessment of battery cell manufacturing systems. Procedia Manufacturing, 43, 32-39. Doi: https://doi.org/10.1016/j.promfg.2020.02.179

McCormick Jr, W. T., Schweitzer, P. J., & White, T. W. (1972). Problem decomposition and data reorganization by a clustering technique. Operations Research, 20(5), 993-1009. Doi: https://doi.org/10.1287/opre.20.5.993

King, J. R. (1980). Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. International Journal of Production Research, 18(2), 213-232. Doi: https://doi.org/10.1080/00207548008919662

Kusiak, A. (1987). The generalized group technology concept. International journal of production research, 25(4), 561-569. Doi: https://doi.org/10.1080/00207548708919861

Li, Y., Liu, C., Zhang, L., & Sun, B. (2021). A partition optimization design method for a regional integrated energy system based on a clustering algorithm. Energy, 219, 119562. Doi: https://doi.org/10.1016/j.energy.2020.119562

Vialetto, G., & Noro, M. (2020). An innovative approach to design cogeneration systems based on big data analysis and use of clustering methods. Energy Conversion and Management, 214, 112901. Doi: https://doi.org/10.1016/j.enconman.2020.112901

McAuley, J. (1972). Machine grouping for efficient production. Production engineer, 51(2), 53-57. Doi:

Seifoddini, H. (1989). A note on the similarity coefficient method and the problem of improper machine assignment in group technology applications. The international journal of production research, 27(7), 1161-1165. Doi: https://doi.org/10.1080/00207548908942614

Gupta, T., & Seifoddini, H. I. (1990). Production data based similarity coefficient for machine-component grouping decisions in the design of a cellular manufacturing system. The international journal of production research, 28(7), 1247-1269. Doi: https://doi.org/10.1080/00207549008942791

Erenay, B., Suer, G. A., Huang, J., & Maddisetty, S. (2015). Comparison of layered cellular manufacturing system design approaches. Computers & Industrial Engineering, 85, 346-358. Doi: https://doi.org/10.1016/j.cie.2015.02.021

Wu, C., Peng, Q., Lee, J., Leibnitz, K., & Xia, Y. (2021). Effective hierarchical clustering based on structural similarities in nearest neighbor graphs. Knowledge-Based Systems, 107295. Doi: https://doi.org/10.1016/j.knosys.2021.107295

Wu, C., Li, H., & Ren, J. (2021). Research on hierarchical clustering method based on partially-ordered Hasse graph. Future Generation Computer Systems. Doi: https://doi.org/10.1016/j.future.2021.07.025

Selim, H. M., Askin, R. G., & Vakharia, A. J. (1998). Cell formation in group technology: review, evaluation and directions for future research. Computers & Industrial Engineering, 34(1), 3-20. Doi: https://doi.org/10.1016/S0360-8352(97)00147-2

Lemoine, Y., Mutel, B. (1983) Automatic recognition of production cells and part families. In advances in CAD/CAM, by T: M., Semenkov, O.I. Ellis, 239-248. Amsterdam: North-Holland.

Chandrasekharan, M., & Rajagopalan, R. (1986). MODROC: an extension of rank order clustering for group technology. International Journal of Production Research, 24(5), 1221-1233. Doi: https://doi.org/10.1080/00207548608919798

Srinivasan, G., & Narendran, T. T. (1991). GRAFICS—a nonhierarchical clustering algorithm for group technology. The International Journal of Production Research, 29(3), 463-478. Doi: https://doi.org/10.1080/00207549108930083

Nair, G. J., & Narendran, T. T. (1998). CASE: A clustering algorithm for cell formation with sequence data. International journal of production research, 36(1), 157-180. Doi: https://doi.org/10.1080/002075498193985

Park, J., Park, K. V., Yoo, S., Choi, S. O., & Han, S. W. (2020). Development of the WEEE grouping system in South Korea using the hierarchical and non-hierarchical clustering algorithms. Resources, Conservation and Recycling, 161, 104884. Doi: https://doi.org/10.1016/j.resconrec.2020.104884

Rajagopalan, R., & Batra, J. L. (1975). Design of cellular production systems a graph-theoretic approach. The International Journal of Production Research, 13(6), 567-579. Doi: https://doi.org/10.1080/00207547508943029

Witte, J. D. (1980). The use of similarity coefficients in production flow analysis. International Journal of Production Research, 18(4), 503-514. Doi: https://doi.org/10.1080/00207548008919686

Askin, R. G., & Chiu, K. S. (1990). A graph partitioning procedure for machine assignment and cell formation in group technology. The International Journal of Production Research, 28(8), 1555-1572. Doi: https://doi.org/10.1080/00207549008942812

Faber, Z., & Carter, M. W. (1986). A new graph theory approach for forming machine cells in cellular production systems. Flexible manufacturing systems: Methods and studies, 301-318.

Chen, H., Pan, X., Lu, X., & Xie, Q. (2020). A modified graph cuts image segmentation algorithm with adaptive shape constraints and its application to computed tomography images. Biomedical Signal Processing and Control, 62, 102092. Doi: https://doi.org/10.1016/j.bspc.2020.102092

Luo, W., Greene, A. S., & Constable, R. T. (2021). Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain. NeuroImage, 240, 118332. Doi: https://doi.org/10.1016/j.neuroimage.2021.118332

Sangeetha, S., Hema, P., Selvarani, N., Geetha, P., Karthikeyan, P., & Kumar, S. G. (2021). Fuzzy graph theory in coloring graph. Materials Today: Proceedings. Doi: https://doi.org/10.1016/j.matpr.2021.01.797

King, J. R., & Nakornchai, V. (1982). Machine-component group formation in group technology: review and extension. The international journal of production research, 20(2), 117-133. Doi: https://doi.org/10.1080/00207548208947754

Yıldırım, M., Okay, F. Y., & Özdemir, S. (2021). Big data analytics for default prediction using graph theory. Expert Systems with Applications, 176, 114840. Doi: https://doi.org/10.1016/j.eswa.2021.114840

Vohra, T., CHEN, D. S., CHANG, J. C., & CHEN, H. C. (1990). A network approach to cell formation in cellular manufacturing. International Journal of production research, 28(11), 2075-2084. Doi: https://doi.org/10.1080/00207549008942854

Lee, H., & Garcia-Diaz, A. (1996). Network flow procedures for the analysis of cellular manufacturing systems. IIE transactions, 28(4), 333-345. doi: https://doi.org/10.1080/07408179608966280

Bainy, R. G., Johnson, B. K., & Guzmán, A. (2021). Dynamic zone selection for busbar protection Using graph theory and path analysis. Electric Power Systems Research, 197, 107241. doi: https://doi.org/10.1016/j.epsr.2021.107241

Kusiak, A. (1988). EXGT-S: A knowledge based system for group technology. The International Journal Of Production Research, 26(5), 887-904. doi: https://doi.org/10.1080/00207548808947908

Luong, L., He, J., Abhary, K., & Qiu, L. (2002). A decision support system for cellular manufacturing system design. Computers & Industrial Engineering, 42(2-4), 457-470. doi: https://doi.org/10.1016/S0360-8352(02)00032-3

Xu, H., & Wang, H. P. (1989). Part family formation for GT applications based on fuzzy mathematics. The international Journal of production Research, 27(9), 1637-1651. doi: https://doi.org/10.1080/00207548908942644

Chu, C. H., & Hayya, J. C. (1991). A fuzzy clustering approach to manufacturing cell formation. The international journal of production research, 29(7), 1475-1487. doi: https://doi.org/10.1080/00207549108948024

Güngör, Z., & Arıkan, F. (2000). Application of fuzzy decision making in part-machine grouping. International Journal of Production Economics, 63(2), 181-193. doi: https://doi.org/10.1016/S0925-5273(99)00010-9

Josien, K., & Liao, T. W. (2002). Simultaneous grouping of parts and machines with an integrated fuzzy clustering method. Fuzzy Sets and Systems, 126(1), 1-21. doi: https://doi.org/10.1016/S0165-0114(01)00063-X

Lozano, S., Dobado, D., Larrañeta, J., & Onieva, L. (2002). Modified fuzzy C-means algorithm for cellular manufacturing. Fuzzy sets and systems, 126(1), 23-32. doi: https://doi.org/10.1016/S0165-0114(01)00003-3

Zolfagha Ri, S., & Liang, M. (1997). An objective-guided ortho-synapse Hopfield network approach to machine grouping problems. International Journal of Production Research, 35(10), 2773-2792. doi: https://doi.org/10.1080/002075497194444

Solimanpur, M., Saeedi, S., & Mahdavi, I. (2010). Solving cell formation problem in cellular manufacturing using ant-colony-based optimization. The International Journal of Advanced Manufacturing Technology, 50(9-12), 1135-1144. doi: 10.1007/s00170-010-2587-5.

Guerrero, F., Lozano, S., Smith, K. A., Canca, D., & Kwok, T. (2002). Manufacturing cell formation using a new self-organizing neural network. Computers & Industrial Engineering, 42(2-4), 377-382. doi: https://doi.org/10.1016/S0360-8352(02)00039-6

Saidi-Mehrabad, M., & Safaei, N. (2007). A new model of dynamic cell formation by a neural approach. The International Journal of Advanced Manufacturing Technology, 33(9-10), 1001-1009. doi: 10.1007/s00170-006-0518-2

Delgoshaei, A., & Gomes, C. (2016). A multi-layer perceptron for scheduling cellular manufacturing systems in the presence of unreliable machines and uncertain cost. Applied Soft Computing, 49, 27-55. doi: https://doi.org/10.1016/j.asoc.2016.06.025

Bulgak, A. A., & Bektas, T. (2009). Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. European journal of operational research, 192(2), 414-428. doi: https://doi.org/10.1016/j.ejor.2007.09.023

Chan, F. T. S., Lau, K. W., Chan, L. Y., & Lo, V. H. Y. (2008). Cell formation problem with consideration of both intracellular and intercellular movements. International Journal of Production Research, 46(10), 2589-2620. doi: https://doi.org/10.1080/00207540500478843

Rogers, D. F., & Kulkarni, S. S. (2005). Optimal bivariate clustering and a genetic algorithm with an application in cellular manufacturing. European Journal of Operational Research, 160(2), 423-444. doi: https://doi.org/10.1016/j.ejor.2003.07.005

Lee-Post, A. (2000). Part family identification using a simple genetic algorithm. International journal of production research, 38(4), 793-810. doi: https://doi.org/10.1080/002075400189158

Mak, K. L., Wong, Y. S., & Wang, X. X. (2000). An adaptive genetic algorithm for manufacturing cell formation. The International Journal of Advanced Manufacturing Technology, 16(7), 491-497.

Wu, X., Chu, C. H., Wang, Y., & Yan, W. (2006). Concurrent design of cellular manufacturing systems: a genetic algorithm approach. International Journal of Production Research, 44(6), 1217-1241. doi: https://doi.org/10.1080/00207540500338252

Onwubolu, G. C., & Mutingi, M. (2001). A genetic algorithm approach to cellular manufacturing systems. Computers & industrial engineering, 39(1-2), 125-144. doi: https://doi.org/10.1016/S0360-8352(00)00074-7

Tariq, A., Hussain, I., & Ghafoor, A. (2009). A hybrid genetic algorithm for machine-part grouping. Computers & Industrial Engineering, 56(1), 347-356. doi: https://doi.org/10.1016/j.cie.2008.06.007

Joines, J. A., Culbreth, C. T., & King, R. E. (1996). Manufacturing cell design: an integer programming model employing genetic algorithms. IIE transactions, 28(1), 69-85. doi: https://doi.org/10.1080/07408179608966253

Solimanpur, M., Vrat, P., & Shankar, R. (2004). A multi-objective genetic algorithm approach to the design of cellular manufacturing systems. International journal of production research, 42(7), 1419-1441. doi: https://doi.org/10.1080/00207540310001638073

Kor, H., Iranmanesh, H., Haleh, H., & Hatefi, S. M. (2009, January). A multi-objective genetic algorithm for optimization of cellular manufacturing system. In 2009 International Conference on Computer Engineering and Technology (Vol. 1, pp. 252-256). IEEE. doi: 10.1109/ICCET.2009.212

Neto, A. R. P., & Gonçalves Filho, E. V. (2010). A simulation-based evolutionary multiobjective approach to manufacturing cell formation. Computers & Industrial Engineering, 59(1), 64-74. doi: https://doi.org/10.1016/j.cie.2010.02.017

Chandrasekar, K., & Venkumar, P. (2013). Genetic algorithm approach for integrating cell formation with machine layout and cell layout. International Journal of Operational Research, 16(2), 155-171. doi: https://doi.org/10.1504/IJOR.2013.051787

Wicks, E. M. (1995). Designing cellular manufacturing systems with time varying product mix and resource availability (Doctoral dissertation, Virginia Tech).

Izui, K., Murakumo, Y., Suemitsu, I., Nishiwaki, S., Noda, A., & Nagatani, T. (2013). Multiobjective layout optimization of robotic cellular manufacturing systems. Computers & Industrial Engineering, 64(2), 537-544. doi: https://doi.org/10.1016/j.cie.2012.12.003

Khaksar-Haghani, F., Kia, R., Mahdavi, I., & Kazemi, M. (2013). A genetic algorithm for solving a multi-floor layout design model of a cellular manufacturing system with alternative process routings and flexible configuration. The International Journal of Advanced Manufacturing Technology, 66(5), 845-865. doi: https://doi.org/10.1007/s00170-012-4370-2

Saxena, L. K., & Jain, P. K. (2011). Dynamic cellular manufacturing systems design—a comprehensive model. The International Journal of Advanced Manufacturing Technology, 53(1-4), 11-34. doi: 10.1007/s00170-010-2842-9

Sakhaii, M., Tavakkoli-Moghaddam, R., Bagheri, M., & Vatani, B. (2016). A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines. Applied Mathematical Modelling, 40(1), 169-191. doi: https://doi.org/10.1016/j.apm.2015.05.005

Suemitsu, I., Izui, K., Yamada, T., Nishiwaki, S., Noda, A., & Nagatani, T. (2016). Simultaneous optimization of layout and task schedule for robotic cellular manufacturing systems. Computers & Industrial Engineering, 102, 396-407. doi: https://doi.org/10.1016/j.cie.2016.05.036

Mohammadi, M., & Forghani, K. (2016). Designing cellular manufacturing systems considering S-shaped layout. Computers & Industrial Engineering, 98, 221-236. doi: https://doi.org/10.1016/j.cie.2016.05.041

Bootaki, B., Mahdavi, I., & Paydar, M. M. (2016). New criteria for configuration of cellular manufacturing considering product mix variation. Computers & Industrial Engineering, 98, 413-426. doi: https://doi.org/10.1016/j.cie.2016.06.021

Delgoshaei, A., Ali, A., Ariffin, M. K. A., & Gomes, C. (2016). A multi-period scheduling of dynamic cellular manufacturing systems in the presence of cost uncertainty. Computers & Industrial Engineering, 100, 110-132. doi: https://doi.org/10.1016/j.cie.2016.08.010

Deep, K., & Singh, P. K. (2015). Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm. Journal of Manufacturing Systems, 35, 155-163. doi: https://doi.org/10.1016/j.jmsy.2014.09.008

Azadeh, A., Pashapour, S., & Abdolhossein Zadeh, S. (2016). Designing a cellular manufacturing system considering decision style, skill and job security by NSGA-II and response surface methodology. International Journal of Production Research, 54(22), 6825-6847. doi: https://doi.org/10.1080/00207543.2016.1178407

Shirzadi, S., Tavakkoli-Moghaddam, R., Kia, R., & Mohammadi, M. (2017). A multi-objective imperialist competitive algorithm for integrating intra-cell layout and processing route reliability in a cellular manufacturing system. International Journal of Computer Integrated Manufacturing, 30(8), 839-855. doi: https://doi.org/10.1080/0951192X.2016.1224388

Megala, N., Rajendran, C., & Gopalan, R. (2008). An ant colony algorithm for cell-formation in cellular manufacturing systems. European journal of industrial engineering, 2(3), 298-336. doi: https://doi.org/10.1504/EJIE.2008.017688

Li, X., Baki, M. F., & Aneja, Y. P. (2010). An ant colony optimization metaheuristic for machine–part cell formation problems. Computers & Operations Research, 37(12), 2071-2081. doi: https://doi.org/10.1016/j.cor.2010.02.007

Xing, B., Gao, W. J., Nelwamondo, F. V., Battle, K., & Marwala, T. (2010). Part-machine clustering: the comparison between adaptive resonance theory neural network and ant colony system. In Advances in Neural Network Research and Applications (pp. 747-755). Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-12990-2_87

Bajestani, M. A., Rabbani, M., Rahimi-Vahed, A. R., & Khoshkhou, G. B. (2009). A multi-objective scatter search for a dynamic cell formation problem. Computers & operations research, 36(3), 777-794. doi: https://doi.org/10.1016/j.cor.2007.10.026

Slomp, J., Chowdary, B. V., & Suresh, N. C. (2005). Design of virtual manufacturing cells: a mathematical programming approach. Robotics and Computer-Integrated Manufacturing, 21(3), 273-288. doi: https://doi.org/10.1016/j.rcim.2004.11.001

Arani, S. D., & Mehrabad, M. S. (2014). A two stage model for Cell Formation Problem (CFP) considering the inter-cellular movements by AGVs. Journal of Industrial and Systems Engineering, 7(1), 43-55. doi: 20.1001.1.17358272.2014.7.1.3.5

Delgoshaei, A., Ariffin, M. K. A., & Ali, A. (2017). A multi-period scheduling method for trading-off between skilled-workers allocation and outsource service usage in dynamic CMS. International journal of production research, 55(4), 997-1039. doi: https://doi.org/10.1080/00207543.2016.1213445

Wu, T. H., Yeh, J. Y., & Chang, C. C. (2009). A hybrid tabu search algorithm to cell formation problem and its variants. World Academy of Science, Engineering and Technology, 53, 1090-1094.

Safaei, N., Saidi-Mehrabad, M., & Jabal-Ameli, M. S. (2008). A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system. European Journal of Operational Research, 185(2), 563-592. doi: https://doi.org/10.1016/j.ejor.2006.12.058

Defersha, F. M., & Chen, M. (2008). A parallel multiple Markov chain simulated annealing for multi-period manufacturing cell formation problems. The International Journal of Advanced Manufacturing Technology, 37(1-2), 140-156. doi: 10.1007/s00170-007-0947-6.

Safaei, N., Saidi-Mehrabad, M., Tavakkoli-Moghaddam, R., & Sassani, F. (2008). A fuzzy programming approach for a cell formation problem with dynamic and uncertain conditions. Fuzzy Sets and Systems, 159(2), 215-236. doi: https://doi.org/10.1016/j.fss.2007.06.014

Safaei, N., & Tavakkoli-Moghaddam, R. (2009). An extended fuzzy parametric programming-based approach for designing cellular manufacturing systems under uncertainty and dynamic conditions. International Journal of Computer Integrated Manufacturing, 22(6), 538-548. doi: https://doi.org/10.1080/09511920802616773

Dalfard, V. M. (2013). New mathematical model for problem of dynamic cell formation based on number and average length of intra and intercellular movements. Applied Mathematical Modelling, 37(4), 1884-1896. doi: https://doi.org/10.1016/j.apm.2012.04.034

Kia, R., Shirazi, H., Javadian, N., & Tavakkoli-Moghaddam, R. (2015). Designing group layout of unequal-area facilities in a dynamic cellular manufacturing system with variability in number and shape of cells. International Journal of Production Research, 53(11), 3390-3418. doi: https://doi.org/10.1080/00207543.2014.986295

Liu, C., & Wang, J. (2016). Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing. International Journal of Computational Intelligence Systems, 9(4), 765-777. doi: https://doi.org/10.1080/18756891.2016.1204123

Logendran, R., & Karim, Y. (2003). Design of manufacturing cells in the presence of alternative cell locations and material transporters. Journal of the Operational Research Society, 54(10), 1059-1075. doi: https://doi.org/10.1057/palgrave.jors.2601608

Mahdavi, I., Aalaei, A., Paydar, M. M., & Solimanpur, M. (2012). A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system. Journal of Manufacturing Systems, 31(2), 214-223. doi: https://doi.org/10.1016/j.jmsy.2011.07.007

Foulds, L. R., French, A. P., & Wilson, J. M. (2006). The sustainable cell formation problem: manufacturing cell creation with machine modification costs. Computers & Operations Research, 33(4), 1010-1032. doi: https://doi.org/10.1016/j.cor.2004.09.001

Lei, D., & Wu, Z. (2006). Tabu search for multiple-criteria manufacturing cell design. The International Journal of Advanced Manufacturing Technology, 28(9), 950-956. doi: https://doi.org/10.1007/s00170-004-2441-8

Caprihan, R., Slomp, J., & Agarwal, K. (2009, December). A quantum particle swarm optimization approach for the design of virtual manufacturing cells. In 2009 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 125-129). IEEE. doi: 10.1109/IEEM.2009.5373408

Anvari, M., Mehrabad, M. S., & Barzinpour, F. (2010). Machine–part cell formation using a hybrid particle swarm optimization. The International Journal of Advanced Manufacturing Technology, 47(5), 745-754. doi: https://doi.org/10.1007/s00170-009-2202-9

Durán, O., Rodriguez, N., & Consalter, L. A. (2010). Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Systems with Applications, 37(2), 1563-1567. doi: https://doi.org/10.1016/j.eswa.2009.06.061

Ghahremani-Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert systems with applications, 116, 454-471. doi: https://doi.org/10.1016/j.eswa.2018.09.027

Law, A. M., & McComas, M. G. (1998, December). Simulation of manufacturing systems. In 1998 Winter Simulation Conference. Proceedings (Cat. No. 98CH36274) (Vol. 1, pp. 49-52). IEEE. doi: 10.1109/WSC.1998.744898

Reeb, J. E., Baker, E. S., Brunner, C. C., Funck, J. W., & Reiter, W. F. (2010). Using simulation to select part-families for cell manufacturing. International Wood Products Journal, 1(1), 43-47. doi: https://doi.org/10.1179/002032010X12858356612744

Durmusoglu, M. B., & Satoglu, S. I. (2011). Axiomatic design of hybrid manufacturing systems in erratic demand conditions. International Journal of Production Research, 49(17), 5231-5261. doi: https://doi.org/10.1080/00207543.2010.510487

Siemiatkowski, M., & Przybylski, W. (2007). Modelling and simulation analysis of process alternatives in the cellular manufacturing of axially symmetric parts. The International Journal of Advanced Manufacturing Technology, 32(5), 516-530. doi: https://doi.org/10.1007/s00170-005-0366-5

Azadeh, A., Anvari, M., Ziaei, B., & Sadeghi, K. (2010). An integrated fuzzy DEA–fuzzy C-means–simulation for optimization of operator allocation in cellular manufacturing systems. The International Journal of Advanced Manufacturing Technology, 46(1-4), 361-375. doi: 10.1007/s00170-009-2088-6

Azadeh, A., Nokhandan, B. P., Asadzadeh, S. M., & Fathi, E. (2011). Optimal allocation of operators in a cellular manufacturing system by an integrated computer simulation–genetic algorithm approach. International Journal of Operational Research, 10(3), 333-360. doi: https://doi.org/10.1504/IJOR.2011.038905

Ranaiefar, F., Mohagheghzadeh, R., Chitsaz, M., Ardakani, M. F., & Shahbazi, M. J. (2009, November). Material flow planning in cellular manufacturing systems by computer simulation. In 2009 Third UKSim European Symposium on Computer Modeling and Simulation (pp. 430-434). IEEE. doi: 10.1109/EMS.2009.43

Pitchuka, L. N., Adil, G. K., & Ananthakumar, U. (2006). Effect of conversion of functional layout to a cellular layout on the queue time performance: some new insights. The International Journal of Advanced Manufacturing Technology, 31(5-6), 594-601. doi: 10.1007/s00170-005-0219-2.

Chtourou H, Jerbi A, Maalej A. (2008) The cellular manufacturing paradox: a critical review of simulation studies. Journal of Manufacturing Technology Management, 19(5), 591–606. doi: https://doi.org/10.1108/17410380810877276

Nozari, H., Najafi, E., Fallah, M., & Hosseinzadeh Lotfi, F. (2019). Quantitative analysis of key performance indicators of green supply chain in FMCG industries using non-linear fuzzy method. Mathematics, 7(11), 1020. doi: https://doi.org/10.3390/math7111020

Vakharia, A. J., & Wemmerlov, U. (1990). Designing a cellular manufacturing system: a materials flow approach based on operation sequences. IIE transactions, 22(1), 84-97. Doi: https://doi.org/10.1080/07408179008964161

Alfa, A. S., Chen, M., & Heragu, S. S. (1992). Integrating the grouping and layout problems in cellular manufacturing systems. Computers & Industrial Engineering, 23(1-4), 55-58. Doi: https://doi.org/10.1016/0360-8352(92)90062-O

Balakrishnan, J., & Cheng, C. H. (2005). Dynamic cellular manufacturing under multiperiod planning horizons. Journal of manufacturing technology management. Doi: https://doi.org/10.1108/17410380510600491

Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers & operations research, 39(11), 2642-2658. Doi: https://doi.org/10.1016/j.cor.2012.01.012

Paydar, M. M., Mahdavi, I., Solimanpur, M., & Tajdin, A. (2008, December). Solving a new mathematical model for cellular manufacturing system: fuzzy goal programming. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1224-1228). IEEE. doi: 10.1109/IEEM.2008.4738065.

Ahi, A., Aryanezhad, M. B., Ashtiani, B., & Makui, A. (2009). A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method. Computers & Operations Research, 36(5), 1478-1496. Doi: https://doi.org/10.1016/j.cor.2008.02.012

Fardis, F., Zandi, A., & Ghezavati, V. (2013). Stochastic extension of cellular manufacturing systems: a queuing-based analysis. Journal of industrial engineering international, 9(1), 1-8. Doi: https://doi.org/10.1186/2251-712X-9-20

Safaei, N., & Tavakkoli-Moghaddam, R. (2009). Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems. International Journal of Production Economics, 120(2), 301-314. Doi: https://doi.org/10.1016/j.ijpe.2008.12.013

Eski, O., & Ozkarahan, I. (2007, August). Design of manufacturing cells for uncertain production requirements with presence of routing flexibility. In International Conference on Intelligent Computing (pp. 670-681). Springer, Berlin, Heidelberg. Doi: https://doi.org/10.1007/978-3-540-74205-0_71

Tavakkoli-Moghaddam, R., Javadian, N., Javadi, B., & Safaei, N. (2007). Design of a facility layout problem in cellular manufacturing systems with stochastic demands. Applied Mathematics and Computation, 184(2), 721-728. Doi: https://doi.org/10.1016/j.amc.2006.05.172

Ghezavati, V. R., & Saidi-Mehrabad, M. (2011). An efficient hybrid self-learning method for stochastic cellular manufacturing problem: A queuing-based analysis. Expert Systems with Applications, 38(3), 1326-1335. Doi: https://doi.org/10.1016/j.eswa.2010.07.012

Torabi, S. A., & Amiri, A. S. (2012). A possibilistic approach for designing hybrid cellular manufacturing systems. International Journal of Production Research, 50(15), 4090-4104. Doi: https://doi.org/10.1080/00207543.2011.590827

Arıkan, F., & Güngör, Z. (2009). Modeling of a manufacturing cell design problem with fuzzy multi-objective parametric programming. Mathematical and Computer Modelling, 50(3-4), 407-420. Doi: https://doi.org/10.1016/j.mcm.2009.04.017

Arıkan, F., & Güngör, Z. (2007). A two-phase approach for multi-objective programming problems with fuzzy coefficients. Information sciences, 177(23), 5191-5202. Doi: https://doi.org/10.1016/j.ins.2007.06.023

Mahdavi, I., Javadi, B., Fallah-Alipour, K., & Slomp, J. (2007). Designing a new mathematical model for cellular manufacturing system based on cell utilization. Applied mathematics and Computation, 190(1), 662-670. Doi: https://doi.org/10.1016/j.amc.2007.01.060

Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2008). A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing. Journal of the Operational Research Society, 59(4), 443-454. Doi: https://doi.org/10.1057/palgrave.jors.2602436

Eguia, I., Molina, J. C., Lozano, S., & Racero, J. (2017). Cell design and multi-period machine loading in cellular reconfigurable manufacturing systems with alternative routing. International Journal of Production Research, 55(10), 2775-2790. Doi: https://doi.org/10.1080/00207543.2016.1193673

Downloads

Published

2021-04-02

How to Cite

Ghahremani Nahr, J., Bathaee, M., Mazloumzadeh, A., & Nozari, H. (2021). Cell Production System Design: A Literature Review. International Journal of Innovation in Management, Economics and Social Sciences, 1(1), 16–44. https://doi.org/10.52547/ijimes.1.1.16

Issue

Section

Review Article